1.3. Устройство и рабочий процесс гидротрансформатора
Основными элементами
гидравлического трансформатора являются
три соосно
установленных
лопастных колеса
:
насосное, турбинное и реактивное
(реактор), а также
корпус
, подшипники и другие вспомогательные детали. На
осевом разрезе
гидротрансформатора (рис. 3.2) показано
насосное
колесо Н,
турбинное
колесо Т,
реактивное
колесо (реактор) Р и
корпус
гидротрансформатора К, а также
муфта свободного хода
.
Основным
конструктивным
отличием колес
гидротрансформатора от колес гидромуфты
является сложный
криволинейный
профиль их лопаток
(рис. 3.2).
Насосное колесо Н
приводится
во вращение
крутящим
моментом двигателяМ
1.
Жидкость
, находящаяся
в межлопаточном
пространстве насоса
раскручивается
вместе с ним с угловой
скоростьюω1
и
отбрасывается от оси
вращения
к периферии
колеса. При этом
каждая частица
жидкости
приобретает
кинетическую
энергию
и скорость в направлении вращения колеса
. Затем поток
жидкости
перемещается
с насосного колеса
на турбинное
колесо Т.
В
межлопаточном
пространстве турбинного
колеса
жидкость
, раскрученная в насосном колесе,
воздействует
на
лопатки турбинного
колеса и
приводит
его
во вращение
с угловой скоростью
ω1
. При этом
частицы жидкости
постепенно
теряют
кинетическую
энергию
, полученную в насосном колесе, и
движутся от периферии к оси
вращения. Затем
поток
жидкости
перемещается
с турбинного колеса Т
на реактор
Р.
Далее поток
жидкости
проходит
через межлопаточное
пространство неподвижного реактора
и
перемещается
на
насосное
колесо.
Затем рабочий процесс повторяется
, т.е. жидкость циркулирует в межлопаточном пространстве колес по замкнутому контуру.
Реактор
Р служит для
изменения
крутящего
момента
на гидротрансформаторе, т.е. для
получения на выходном валу
момента
М2
, отличного от входного момента
М1.
В конструкцию
гидротрансформатора
включают муфту свободного хода
. При
положительном
значении
момента
на
реактивном колесе
она
обеспечивает неподвижность
реактивного
колеса
(“стопорит”).
При изменении направлениямомента
на реакторе обгонная муфта
освобождает реактор
, который начинает
свободно вращаться
вместе
с потоком
жидкости. При этом
гидротрансформатор
начинает
работатьв режиме гидромуфты
, так как в этом случае у него
отсутствует
неподвижное
реактивное колесо
.
Такой гидротрансформатор
, в котором совмещаются свойства гидротрансформатора и гидромуфты,
называетсякомплексным гидротрансформатором.
Применение
гидротрансформаторов
ограничиваетсянедостаточно высокими КПД
. Так, их
максимальные
значения составляют
η=0,8…0,93
,
но существенно падают
при отклонении от этого режима. Особенно
неприемлемо это падение
в области
высоких
значений
передаточного отношения
, т.е. при
i
→ 1.

Объемный привод. Определение. Классификация объемного гидропривода по различным признакам.
Система охлаждения
Гидроприводомназывается совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством рабочей жидкости, находящейся под давлением, с одновременным выполнением функций регулирования и реверсирования скорости движения выходного звена гидродвигателя.
В зависимости от конструкции и типа, входящих в состав гидропередачи элементов объемные гидроприводы можно классифицировать по нескольким признакам:
1) По характеру движения выходного звена гидродвигателя:
— гидропривод вращательного движения, когда в качестве гидродвигателя применяется гидромотор, у которого ведомое звено (вал или корпус) совершает неограниченное вращательное движение;
— гидропривод поступательного движения, у которого в качестве гидродвигателя применяется гидроцилиндр — двигатель с возвратно-поступательным движением ведомого звена (штока поршня, плунжера или корпуса);
— гидропривод поворотного движения, когда в качестве гидродвигателя применен поворотный гидродвигатель, у которого ведомое звено (вал или корпус) совершает возвратно-поворотное движение на угол, меньший 360.
2) По возможности регулирования:
— регулируемый гидропривод, в котором в процессе его эксплуатации скорость выходного звена гидродвигателя можно изменять по требуемому закону. В свою очередь регулирование может быть дроссельным, объемным, объемно-дроссельным или изменением скорости двигателя, приводящего в работу насос. Регулирование может быть ручным или автоматическим. В зависимости от задач регулирования гидропривод может быть стабилизированным, программным или следящим;
— нерегулируемый гидропривод, у которого нельзя изменять скорость движения выходного звена гидропередачи в процессе эксплуатации.
3) По схеме циркуляции рабочей жидкости:
— гидропривод с замкнутой схемой циркуляции, в котором рабочая жидкость от гидродвигателя возвращается во всасывающую гидролинию насоса. Гидропривод с замкнутой циркуляцией рабочей жидкости компактен, имеет небольшую массу и допускает большую частоту вращения ротора насоса без опасности возникновения кавитации, поскольку в такой системе во всасывающей линии давление всегда превышает атмосферное. К недостаткам следует отнести плохие условия для охлаждения рабочей жидкости, а также необходимость спускать из гидросистемы рабочую жидкость при замене или ремонте гидроаппаратуры;
— гидропривод с разомкнутой системой циркуляции, в котором рабочая жидкость постоянно сообщается с гидробаком или атмосферой. Достоинства такой схемы — хорошие условия для охлаждения и очистки рабочей жидкости. Однако такие гидроприводы громоздки и имеют большую массу, а частота вращения ротора насоса ограничивается допускаемыми (из условий бескавитационной работы насоса) скоростями движения рабочей жидкости во всасывающем трубопроводе.
4) По источнику подачи рабочей жидкости:
— насосные гидроприводы, в которых рабочая жидкость подается в гидродвигатели насосами, входящих в состав этих гидроприводов;
— аккумуляторные гидроприводы, в которых рабочая жидкость подается в гидродвигатели из гидроаккумуляторов, предварительно заряженных от внешних источников, не входящих в состав данных гидроприводов;
— магистральные гидроприводы, в которых рабочая жидкость подается к гидродвигателям от специальной магистрали, не входящей в состав этих приводов;
— насосно-аккумуляторный гидропривод, смешанный источник питания.
5) По типу приводящего двигателягидроприводы могут быть сэлектроприводом,приводом от ДВС,турбини т.д.
Назначение гидромуфты и ее роль в системе охлаждения
Гидромуфта имеет несколько несомненных плюсов и преимуществ перед вискомуфтой и электрическим приводом вентилятора, что и определяет ее широчайшее распространение. В сравнении с вискомуфтой, гидромуфта работает более надежно и эффективно, она более четко включается и выключается, обеспечивая надежное охлаждение радиатора. А в сравнении с электрическим приводом, гидравлическая муфта делает ненужной целую электрическую цепь со своими предохранителями, реле, датчиками и проводкой. При этом более сложная конструкция гидромуфты полностью окупается ее надежностью и эффективностью, которые недоступны вязкостной муфте и электродвигателю.
Гидравлическая муфта выполняет несколько функций:
• Отбор мощности от коленчатого вала на вентилятор;
• Плавное подключение и отключение вентилятора охлаждения от коленвала;
• Демпфирование нагрузок и реактивных моментов, возникающих в моменты подключения и отключения вентилятора, а также при изменении режима работы силовой установки.
Однако сразу нужно отметить, что гидромуфта сама по себе — узел малоэффективный, нормально свои функции она может выполнять только в паре с регулятором-выключателем. Данный узел осуществляет управление работой гидравлической муфты, и решает несколько задач:
• Включение и отключение вентилятора в автоматическом режиме при достижении пороговой температуры;
• Постоянное включение или отключение вентилятора независимо от степени нагрева мотора;
• Обеспечение оптимальной частоты вращения крыльчатки в зависимости от текущей температуры силовой установки.
Работая в паре, муфта и регулятор управляют работой вентилятора и всей системы охлаждения дизеля в целом. Так что данные узлы играют важную роль, но при этом не отличаются сложным устройством и дороговизной.
Источник
Гидротрансформатор
Причины неисправностей АКПП и возможные поломки
В начале будет проще понять принцип работы гидротрансформатора на примере гидромуфты. Гидромуфта по конструкции очень на него похожа, но не умеет изменять передаточное число, а только передает крутящий момент.
Гидромуфта состоит из двух колес с лопатками (как у вентилятора) которые вращаются друг напротив друга. Одно колесо, насосное, соединено с двигателем, второе колесо, турбинное, соединено с КПП. Оба колеса находятся в герметичном кожухе внутрь которого залито масло.
При вращении двигателем насосного колеса вязкое масло захватывается его лопатками, выбрасывается на лопатки турбинного колеса приводя его в движение. Таким образом кинетическая энергия от вращения вала двигателя передается валу КПП хотя при этом отсутствует жесткая связь между ними.
Наиболее наглядно демонстрирует этот механизм опыт с двумя вентиляторами расположенными друг напротив друга. Один из них выключен, второй включен. Воздух ударяясь о неподвижные лопатки выключенного вентилятора заставляет их вращаться.
Однако в замкнутом пространстве в котором работает гидромуфта обратный поток масла идущий от турбинного колеса попадает на лопатки насосного колеса в обратном направлении и замедляет его ход. Чтобы уменьшить этот эффект, на пути движения масла устанавливают третье колесо — реакторное. Это колесо может свободно вращаться или блокироваться на валу. Таким образом получается гидротрансформатор.
Схема гидротрансформатора: 1 — блокировочная муфта; 2 — турбинное колесо; 3 — насосное колесо; 4 — реакторное колесо; 5 — механизм свободного хода
Если третье колесо (реактор) свободно вращается, то гидротрансформатор работает в режиме гидромуфты.
Если же реакторное колесо фиксируется неподвижно, то за счет своих лопастей он изменяет направление потока жидкости, выходящей из турбинного колеса и направляет его под определенным углом на лопасти насосного колеса. Это позволяет значительно увеличить передаваемый от двигателя в трансмиссию крутящий момент. Таким образом происходит трансформация крутящего момента.
*Коэффициент трансформации момента Kt (или силовое передаточное отношение) определяется отношением крутящего момента турбинного колеса к крутящему моменту насосного колеса гидропередачи Kt = MT / MH.
В автомобильных гидротрансформаторах коэффициент трансформации равен 2-3,5, а КПД 0,9
Схема потока жидкости в гидротрансформаторе:
Недостатком гидропередачи является рассогласование частот вращения насосного и турбинного колес, так называемое — скольжение гидропередачи, имеющее место при любом режиме работы трансмиссии. Минимальная величина скольжения составляет примерно 3% и приводит к снижению КПД гидропередачи. Так как, при движении автомобиля с постоянной скоростью наличие гидротрансформатора в трансмиссии не является необходимым, как это требуется на режимах разгона и торможения, в современных коробках применяют механизм блокировки гидротрансформатора. Для блокировки гидротрансформатора чаще всего используется блокировочная муфта, которая позволяет жёстко соединить между собой насосное и турбинное колесо. Это приводит к тому, что гидротрансформатор выключается из силового протока, а двигатель напрямую соединяется с ведущим валом коробки передач.
Основные детали гидротрансформатора:
Детали гидротрансформатора: 1 — насосное колесо; 2 — турбинное колесо; 3 — крышки муфты свободного хода; 4 — часть корпуса гидротрансформатора; 5 — остатки рабочей жидкости с продуктами механического износа деталей; 6 — колесо реактора; 7 — муфта свободного хода реактора; 8 — упорная шайба турбинного колеса; 9 — упорный подшипник реактора; 10 — поршень блокировки гидротрансформатора
Компоновка деталей гидротрансформатора:
В качестве рабочей жидкости в современных гидротрансформаторах используется ATF
Принцип действия
Попробуем разобраться, в чём же состоит её основной принцип роботы. Во время вращения насос является передающим звеном работы двигателя жидкости, которая заполняет гидравлическую муфту через клапан. В процессе этого сообщается запас энергии скорости и энергии давления. Попадая на лопасти, жидкость преобразует энергию в механическую работу, которая приводит к вращению ведомого вала. Покидая турбину, жидкость снова поступает в насос. Во время этого процесса происходит передача момента вращения с одного вала на другой. Таким образом, устанавливается замкнутый процесс, который работает в таком порядке: насос – турбина – насос. Делаем вывод, что основным элементом, которая связывает между собой оба вала – это жидкость.
В процессе действия происходят некоторые потери. Причиной этому является тот факт, что в рабочем состоянии ведущий вал немного опережает ведомый.
Гидравлическая турбомуфта
| Принципиальная схема гидравлической турбомуфты. |
Халдекс
Гидравлические турбомуфты получают все более широкое применение в различных отраслях машиностроения. Они обеспечивают плавный запуск машин, выравнивают нагрузку между несколькими одновременно работающими двигателями, гасят крутильные колебания в трансмиссиях, используются в качестве предохранительных устройств. Существует большое количество различных типов гидравлических муфт, конструкции и характеристики которых описаны в литературе , однако принцип действия этих муфт практически одинаков.
Гидравлические турбомуфты получают все более широкое применение в различных отраслях машиностроения.
Для гидравлических турбомуфт, имеющих провалы на неустойчивых участках характеристик, зависимость для крутящего момента получается более сложной, так как в этом случае на семействе характеристик приходится выделять несколько характерных зон.
Наличие в трансмиссии машины гидравлической турбомуфты способствует существенному снижению динамичности привода. Однако в некоторых элементах трансмиссии все же могут развиваться относительно большие динамические нагрузки.
Привод осуществляется от электродвигателя через гидравлическую турбомуфту с помощью клиновых ремней. Турбомуфта крепится непосредственно на валу электродвигателя.
| Эквивалентная схема привода с гидравлической турбомуфтой. |
Подавляющее число машин, оснащенных гидравлическими турбомуфтами, работает в повторно-кратковременном режиме, в котором большое место занимают процессы запуска и реверсирования.
Упрощенная эквивалентная схема привода с гидравлической турбомуфтой приведена на рис. 58, а.
Центрифуга оснащена противоперегрузочной защитой и гидравлической турбомуфтой.
Ускоренное движение конвейера вызывается усилиями, развиваемыми гидравлическими турбомуфтами приводов. Как было показано в § 12, эти муфты в период запуска сначала работают на неустойчивых участках характеристик, а затем переходят в режим устойчивой работы.
Для различных крупных машин в настоящее время характерно применение гидравлических турбомуфт, так как они обеспечивают плавный запуск машины, выравнивают нагрузку между несколькими одновременно работающими двигателями, гасят крутильные колебания в трансмиссиях, используются в качестве предохранительных устройств.
Однако в практике эксплуатации машин, оснащенных несколькими приводами с гидравлическими турбомуфтами, возможны аварийные случаи запуска, при которых развиваются значительные динамические усилия.
| Переходные процессы при реверсе привода с турбомуфтой. |
На рис. 61 показаны результаты аналитического исследования процесса реверсирования привода с гидравлической турбомуфтой при переходе из двигательного режима работы в генераторный при постоянной нагрузке исполнительного органа. Здесь показан также ( штриховой линией) характер изменения напора масла в рабочей полости муфты.
Принцип работы гидромуфты
В роли рабочей жидкости гидромуфты обычно выступает минеральное масло. В некоторых случаях, когда требуется обеспечение более высоких показателей характеристик гидромуфты, по специальному заказу, изготавливаются гидромуфты, где вместо масла используется вода (трение, создаваемое водой меньше).
Крутящий момент от двигателя преобразуется в гидромуфте в кинетическую энергию движения рабочей жидкости, которая затем переходит в механическую энергию.
Похожие
| 1. Изучить принцип действия, устройство и работу гидромуфты. Освоить методику испытания гидромуфтыГидродинамической передачей называется гидравлическая передача, состоящая из лопастных колес с общей рабочей полостью, в которой… | Устройство ввода порошка для спектрального анализа. А. П. Тагильцев, Е. А. ТагильцеваРазработано устройство ввода порошковой пробы в плазму источника возбуждения спектров. Устройство состоит из диспергатора 1, направляющей… |
| Правила техники безопасности при работе на шлифовальном ленточном станке с подвижным столом шлпс приступая к работеРубильник должен быть закрыт глухим кожухом, не пусковые кнопки утоплены. Пусковое устройство станка должно быть расположено удобно,… | Инструкция по эксплуатации для включения прибора необходимо переключатель установить в верхнее положение. Через 2 секунды selftest усфойство готово к работе. На индикаторе будут показания: 1(или 3,4,5) FlПрибор представляет собой электронное устройство с микропроцессорным управлением для измерения мощности гамма-излучения. В качестве… |
| Звуко и фотоконтролируемый ламповый патрон. Rys-2 (автоматического включения)Предлагаем Вашему вниманию новинку мира электроники звуко и фотоконтролируемый ламповый патрон автоматического включения | Политическое устройство Государственное устройство президентская республикаКонституционного, Верховного, Высшего арбитражного судов, Генерального прокурора, председателя Национального банка, организовывать… |
| «Разработка инновационной модели включения детей раннего и дошкольного возраста в образовательное пространство»На базе гоу детский сад компенсирующего вида №1019 в 2009-2010 учебном году была открыта экспериментальная площадка первого уровня… | Руководство по установке и эксплуатации перед тем, как пытаться подсоединить, либо включить данное устройствоВ целях предотвращения пожара или удара электрическим током, не подвергайте данное устройство воздействию дождя или влаги |
| Поставки компьютерного оборудования в 2011 годуУстройство для воспроизведения звука Cosonic cd-721V – 1шт., 3 Устройство для записи звука usb desctop Microphone Logitech – 1шт | Автоматическое защитное устройство от перепадов напряжения электрической сети (азу-60) Данное устройство защитит Ваши помещения от пожара и Ваше электрооборудование от выхода из строя! Особенности азуДанное устройство защитит Ваши помещения от пожара и Ваше электрооборудование от выхода из строя! |
kk.convdocs.org
kk.convdocs.org
Характеристика — гидромуфта
Характеристика гидромуфты ( рис. 2.78) представляет зависимость момента М от частоты вращения выходного вала и2 при wx const или от передаточного отношения г. Правое поле ОК характеристики соответствует режимам, при которых г положительно и колеса вращаются в одном направлении.
Характеристика гидромуфты строится графически при помощи экспериментально полученной характеристики дросселя.
Характеристика гидромуфты, построенная по расшифровке осциллограммы разгона системы.
| Характеристика гидромуфты. |
Характеристика гидромуфты ( рис. 2.78) представляет зависимость момента М от частоты вращения выходного вала п2 при nl const или от передаточного отношения i. Правое поле ОК характеристики соответствует режимам, при которых i положительно и колеса вращаются в одном направлении.
| Защитная гидромуфта с плоскими наклонными лопатками. |
Характеристики гидромуфты при разных заполнениях W представлены на рис. 21.13, а. Меняя начальное заполнение W, одну и ту же гидромуфту можно использовать с двигателями разной мощности.
Однако характеристика гидромуфты существенно изменяется, если силы трения являются превалирующими. Действительно, в случае частичных характеристик гидромуфты с небольшими вертикальными координатами наличие вершины будет сказываться все менее, поскольку по мере падения циркуляции к величине момента от циркуляции жидкости будет добавляться все большая величина момента трения, графически изображаемая параболой.
Вид характеристик гидромуфты может быть существенно видо — — изменен применением профилировок лопаток насоса и турбины. Эта гидромуфта отличается от изображенной на фиг.
| Гидромуфта с шиберным регу — — лированием и механизмом управления. |
Изменение характеристики гидромуфты, а следовательно, и регулирования с помощью ее можно произвести, установив в проточной части гидромуфты перегородки — шиберы или раздвинув колеса насоса и турбины. Последний вариант возможен, но он усложняет конструкцию и увеличивает осевые размеры, поэтому он малоэффективен. Первый вариант имеет довольно широкое применение. В данном случае искусственно изменяется проточная часть.
Управление формой характеристики гидромуфты осуществляется двумя способами.
Результаты опыта — характеристики гидромуфты с плоскими радиальными лопатками насоса и с лопатками турбины, загнутыми вперед и назад, — представлены на фиг.
| Гидромуфта с дополнительным бачком. / — насосный ротор. / / — турбинный ротор.| Расположение жидкости в гидромуфте с бачком при остановке и. схема циркуляции жидкости при работе. |
Влияние порога на характеристику гидромуфты пока расчету не поддается и определяется опытным путем. Порог подбирается таким, чтобы наибольший момент не превосходил момента двигателя при минимальной устойчивой скорости.
Механизмы переключения
Чтобы включать или выключать ту или иную группу планетарных редукторов в АКПП используются ленточные и дисковые фрикционные элементы, а так же муфты свободного хода (обгонные муфты).
Ленточный тормоз
Ленточный тормоз используется для остановки одного из звеньев АКПП и состоит из тормозной ленты и тормозного барабана. Тормозная лента охватывает тормозной барабан, один её конец жёстко прикреплен к картеру коробки, а второй соединен с устройством управления (с поршнем).
Тормозные ленты изготавливаются из листовой стали. Для увеличения коэффициента трения между тормозной лентой и барабаном к внутренней поверхности тормозной ленты прикрепляется фрикционная накладка. В АКПП наиболее часто используются фрикционные накладки, изготовленные на бумажно-целлюлозной основе. Такие накладки обладают хорошими износостойкими свойствами, не вызывают большого износа поверхности тормозного барабана и не сильно загрязняют рабочую жидкость.
Дисковый тормоз и блокировочная муфта
Дисковый тормоз ничем не отличается от блокировочной муфты. Разница заключается только лишь в том, что дисковый тормоз соединяет звено коробки передач с картером, а блокировочная муфта соединяет между собой два звена АКПП.
Дисковый тормоз состоит из: дисков с фрикционными накладками (они с внутренними шлицами), дисков без накладок (шлицы снаружи), поршня, возвратной пружины, барабана.
При выключенной муфте фрикционные накладки внешнего диска и фрикционные накладки внутреннего диска свободно вращаются относительно друг друга. При включении муфты, рабочая жидкость давит на поршень, он сжимает пакет фрикционов и они «склеиваются» между собой. Таким образом внешний диск и внутренний становятся жестко связанными.
Для выключения муфты достаточно убрать давление жидкости через клапан.
Обгонная муфта
Обгонная муфта (также муфта свободного хода) — деталь механической трансмиссии, которая предотвращает передачу крутящего момента от ведомого вала обратно к ведущему в случае, если по какой-либо причине ведомый начинает вращаться быстрее.
Обгонная муфта не требует управления, она работает за счет разницы в скорости оборотов. Примером обгонной муфты является велосипедная «трещётка».
Принципиальная схема гидромуфты и её технические характеристики
Для лучшего понимания функционирования гидравлической муфты приведём её конструктивную схему:
Колёса (9) снабжены прямыми лопатками, хотя в некоторых случаях, для них используют лопатки изогнутой формы. Гидромуфта является соединением колеса центробежного насоса, колеса реактивной турбины и кожухов (3), как охватывающего, так вращающего. Насос, в свою очередь, присоединён к ведущему валу (6), а реактивная турбина – к ведомому валу (16).
Гидравлическая муфта
Гидравлические муфты, которые находят применение в комбинированных турбопоршневых установках, рассматриваются в других курсах.
Гидравлическая муфта, изображенная на фиг. Разница сводится к тому, что вместо кольцевого воздушного цилиндра применены расположенные по окружности гидроцилиндры, что дает возможность при прочих равных условиях, уменьшить габариты муфты.
| Привод с гидромуфтой ГУ-100 для вентиляторов.| Основные технические данные гидравлических муфт. |
Гидравлические муфты для вентиляторов ( рис. 11.148, 11.149 и табл. 11.122) разработаны и выпускаются Харьковским заводом кондиционеров комплектно с электродвигателями мощностью 40, 55, 75 и 100 кет на общей раме. Передача на вентилятор осуществляется клиновыми ремнями.
Гидравлические муфты делают автономными или включают в систему смазки двигателя. В первом случае крутящий момент передается через слой полностью изолированной в муфте жидкости, вязкость которой мало зависит от изменения температуры. Кроме того, вязкость жидкости должна быть такой, чтобы при работе двигателя на режиме максимального крутящего момента проскальзывание между ведущей и ведомой частями муфты почти отсутствовало. При увеличении частоты вращения момент, необходимый для привода вентилятора, повышается и становится больше того, который может передать муфта, в результате чего происходит проскальзывание и ограничивается частота вращения лопастей вентилятора. В других гидравлических муфтах поток жидкости регулируют с помощью термостатических датчиков.
Гидравлические муфты для вентиляторов разработаны и выпускаются Харьковским заводом кондиционеров комплектно с электродвигателями ( мощностью 40, 55, 75 ч 100 кВт) на общей раме. Передача пи вентилятор осуществляется клиновыми ремнями.
Гидравлические муфты для вентиляторов разработаны и выпускаются Харьковским заводом кондиционеров комплектнр с электродвигателями ( мощностью 40, 55, 75 и 100 кВт) на общей раме. Передача на вентилятор осуществляется клиновыми ремнями.
Гидравлическая муфта в качестве регулирующего звена может применяться для регулирования числа оборотов различных рабочих машин, в частности поршневой ( объемной), электрогенератора ( ди-намомашины) и лопастной. Поэтому целесообразно рассмотреть, при каком сочетании будет обеспечена наибольшая экономичность работы системы.
Гидравлическая муфта, встроенная в маховик и спаренная с тормозом, показана на фиг.
Гидравлические муфты представляют механизм, включенный между электродвигателем и приводимым им механизмом и состоящий иэ ведущего ( насосного) и ведомого ( турбинного) диска. Число оборотов такой системы может регулироваться в очень широких пределах до 1: 5, что дает возможность резкого снижения расхода энергии на привод центробежных механизмов при их недогрузке.
| Кривые потребляемой мощности и потерь мощности при регулировании.| Сравнение способов регулирования производительности механизмов с вентиляторным моментом на валу. |
Гидравлическая муфта ( рис. 8.20) состоит из двух половин: ведущей 1, соединенной с валом двигателя, и ведомой 2, соединенной с валом механизма. Каждая из полумуфт заливается маслом или водой; при вращении полумуфта / работает как центробежный насос, а полумуфта 2 — как гидротурбина. Таким образом, скорость вращения механизма регулируется изменением количества жидкости, находящейся в каждой полумуфте.
Гидравлические муфты сцепления являются важными узлами многих современных машин. Ведомый и ведущий роторы соединяются в них лишь за счет усилия сдвига гидравлической жидкости. В периоды сильных перегрузок при пуске и остановке механизма в жидкости может теряться значительная часть мощности, причем соответственно повышается ее температура.
| Пластинчатый клапан для быстрого опорожнения. |
Гидравлическая муфта Вахмянина с черпательными трубками ( рис. 157) внутри проточной части перед входом в насос имеет две поворотные черпательные трубки, приемные концы которых расположены на разных радиусах. К черпательным трубкам прикреплены флажки-флюгарки. Они действуют как рули, поворачивая черпательные трубы при боковом натекающем потоке так, чтобы приемный срез черпателЬных труб был нормальным к потоку.
Устройство
Гидромуфта самый простой элемент гидромеханической трансмиссии. Крутящий момент на ведущем валу гидромуфты равен крутящему моменту на ведомом валу, таким образом, гидромуфта не изменяет крутящий момент
, передаваемый через нее с вала двигателя на коробку передач. Гидромуфта состоит из трех основных деталей —
картера, ведущего (насосного) колеса и ведомого (турбинного) колеса
. Насосное и турбинное колеса имеют одинаковую конструкцию и обычно совпадают по форме. В разрезе оба колеса имеют форму полуокружности, образуя в собранном виде окружность с небольшим зазором по центру. Внутри желоба колес установлены поперечные лопатки — в ведущем колесе направляющие, в ведомом турбинные. Колеса установлены напротив друг друга с минимальным зазором. Внутренняя полость картера гидромуфты заполнена маслом.
Общепринятые обозначения режимов АКПП
«P» — parking. Режим стоянки. Все передачи выключены, выходной вал КПП и ведущие колёса заторможены блокирующим механизмом.
«R» — reverse, задний ход.
«N» — нейтраль. В этом режиме двигатель и ведущие колёса рассоединены. Автомобиль может двигаться накатом, его можно буксировать.
«D» или «Drive» основной режим для движения вперед. Смена передач осуществляется автоматически.
«S», «Sport», «PWR», «Power» или «Shift» — спортивный режим. Самый динамичный и самый неэкономичный. При разгонах двигатель в все время находится в режиме максимальной мощности. Переключение передач производится позднее, на больших оборотах, чем в обычном режиме.
«Kick-down» — режим, в котором осуществляется переход на пониженную передачу для осуществления интенсивного ускорения, например, при обгоне. Для включения режима надо резко нажать на педаль газа.
«Overdrive» или «O/D» — режим, при котором повышающая передача будет включаться чаще, переводя двигатель на более низкие обороты. «Овердрайв» обеспечивает экономичное передвижение, но с потерей в динамике.
«Norm» реализует самый сбалансированный режим движения. Переключения на повышающие передачи, как правило, происходят по достижении средних оборотов и на оборотах несколько выше средних.
«1» (L, Low), «2» или «3» — выбор фиксированной скорости в АКПП. Эти режимы пригодятся в тяжёлых дорожных условиях, например, при движении по горным дорогам, при буксировке прицепа.
«W», «Winter», «Snow» — «зимний» режим работы АКПП. В целях предотвращения пробуксовки ведущих колёс трогание с места осуществляется со второй передачи. Чтобы не спровоцировать проскальзывания колес, переход с одной передачи на другую производится более мягко и при более низких оборотах.
«+» и «-» — возможность ручного переключения передач в сторону повышения и в сторону понижения.
Вязкостная муфта в системе охлаждения двигателя автомобиля применяется в качестве альтернативы электрическому вентилятору. Рассмотрим, как работает вискомуфта вентилятора, ее устройство, возможные неисправности, преимущества и недостатки.
Вискомуфта вентилятора принцип работы, что это такое
Вискомуфта вентилятора является одним из менее известных составляющих системы охлаждения двигателя.
Что такое вискомуфта вентилятора
Вязкие муфты вентилятора используются на автомобилях (легковых и грузовых автомобилях) с продольно расположенным двигателем, в основном это автомобили с задним приводом. Муфта необходима на низких скоростях и на холостом ходу для регулирования температуры. Неисправный вентилятор может привести к перегреву двигателя во время холостого хода или в условиях интенсивного движения.
Где находится
Вязкая муфта вентилятора расположена между шкивом помпы и радиатором и выполняет следующие функции:
- Контролирует скорость вращения вентилятора для охлаждения двигателя;
- Помогает в эффективности двигателя за счет включения вентилятора, когда это необходимо;
- Снижает нагрузку на двигатель.
Крепление муфты
Либо муфта устанавливается на фланцевой вал, установленный на шкив помпы, либо в качестве альтернативы он может быть навинчен, непосредственно, на вал помпы.
Принцип работы вискомуфты
Вискомуфта основана на биметаллическом датчике, расположенном в передней части вискозного вентилятора. Этот датчик расширяется или сжимается, в зависимости от температуры, передаваемой через радиатор. Этот интеллектуальный компонент повышает эффективность двигателя за счет регулирования оборотов вентилятора двигателя и подачи холодного воздуха.
При холодных температурах
Биметаллический датчик сжимает клапан, поэтому масло внутри муфты остается в камере резервуара. На этом этапе муфта вискозного вентилятора отключается и вращается примерно на 20% от скорости вращения двигателя.
При рабочих температурах
Биметаллический датчик расширяется, вращая клапан и позволяя маслу перемещаться по всей камере во внешние края. Это создает достаточный крутящий момент для привода лопастей охлаждающего вентилятора при рабочих скоростях двигателя. На этом этапе сцепление с вязким вентилятором включается и вращается примерно на 80% от скорости вращения двигателя.
К чему может привести неисправная вискомуфта
При замене помпы всегда рекомендуется проверять состояние сцепления с вязким вентилятором. Поврежденная муфта будет непосредственно влиять на срок службы помпы. Неисправная вязкая муфта вентилятора может оставаться застрявшей в положении зацепления, что означает, что она всегда будет работать на 80% от скорости вращения двигателя. Это может привести к поломке с высоким уровнем шума и вибрации, создавая громкий вихревой звук при увеличении оборотов двигателя и увеличении расхода топлива.
С другой стороны, если соединение с вязким вентилятором выходит из строя в отключенном положении, оно не будет пропускать воздух через радиатор. Это, в свою очередь, приведет к перегреву двигателя при прекращении процесса охлаждения.
Причины поломки
- Утечка масла из муфты, отсоединение муфты вентилятора;
- Биметаллический датчик теряет свои свойства из-за поверхностного окисления, заставляя муфту застревать;
- Неисправность подшипника, хотя может возникнуть редко, если вязкая муфта вентилятора не была заменена после большого пробега. Это приводит к ухудшению состояния поверхностей.
Работа датчика вискомуфты
Биметаллический датчик управляет работой вискозной муфты. В первую очередь, существуют два типа биметаллических сенсорных систем: пластина и катушка. Оба они работают по тому же принципу, что и объяснялось ранее.
Единственное различие заключается в том, что, пока катушка расширяется и сжимается для поворота пластины вращения, биметалл сжимается и изгибается. Это перемещает скользящую пластину и позволяет маслу перемещаться из камеры резервуара в полость.
Видео: как проверить вискомуфту

Понравилась статья? Поделитесь ссылкой с друзьями в социальных сетях!
Интересные материалы
turboracing.ru




