Рабочий цикл — это строгая последовательность рабочих процессов (тактов), периодически повторяющихся в каждом цилиндре. Каждый такт соответствует одно проходу поршня.
Рабочий цикл дизеля может совершаться как за четыре такта (за два оборота коленчатого вала), так и за два такта (за один оборот коленчатого вала). В первом случае дизель называется четырехтактным, во втором — двухтактным.
Рабочий цикл четырехтактного дизеля состоит из тех же тактов, что и рабочий цикл карбюраторного двигателя. Однако происходящие во время этих тактов процессы внутри цилиндров у карбюраторного двигателя и дизеля не одинаковы.
Во время такта впуска в цилиндр дизеля всасывается не горючая смесь, а воздух. Во время такта сжатия поступивший в цилиндр воздух сильно сжимается и вследствие этого нагревается до 500—700° С. В конце этого такта в цилиндр впрыскивается под большим давлением в мелкораспыленном состоянии топливо, которое, соприкасаясь с раскаленным воздухом, воспламеняется и быстро сгорает, образуя большое количество газов и выделяя тепло.
Во время такта расширения под давлением газов поршень перемещается. Процессы при этом такте, а также при такте выпуска аналогичны процессам, происходящим в четырехтактном карбюраторном двигателе.
Таким образом, в любом четырехтактном двигателе только один такт рабочий, а остальные три — вспомогательные.
Рабочий цикл двухтактного дизеля существенно отличается от рабочего цикла четырехтактного: он совершается не за два, за один оборот коленчатого вала и состоит только из двух тактов.
Рис. Основные процессы, происходящие в цилиндрах двухтактного дизеля: а — продувка; б — сжатие; в — рабочий ход; г — выпуск отработавших газов; 1 — поршень; 2 — нагнетатель; 3 — выпускной клапан; 4 — продувочные окна; 5 — ресивер блока; 6 — коленчатый вал; 7 — насос-форсунка
Первый такт (рис. а и б) происходит при перемещении поршня от нижней мертвой точки к верхней. Когда поршень 1 находится в нижней мертвой точке, свежий воздух под небольшим давлением поступает из нагнетателя 2 через ресивер 5 блока и продувочные окна 4 в цилиндр, вытесняя при этом остатки отработавших газов через открытый выпускной клапан 3. Когда поршень, перемещаясь вверх, перекрывает продувочные окна, а выпускной клапан закрывается, продувка цилиндра заканчивается. При дальнейшем перемещении поршня воздух в цилиндре сильно сжимается и нагревается. Когда поршень приближается к верхней мертвой точке, в цилиндр через насос-форсунку 7 впрыскивается под большим давлением топливо.
Второй такт (рис. в и г). Мелкораспыленное топливо, соприкасаясь с раскаленным воздухом, сгорает; при этом выделяется большое количество тепла, температура и давление газов резко возрастают. Под действием давления газов поршень перемещается от верхней мертвой точки к нижней, вращая коленчатый вал.
Когда поршень приближается к продувочным окнам, открывается выпускной клапан и значительная часть отработавших газов вследствие большого избыточного давления выходит из цилиндра. При дальнейшем движении поршня открываются продувочные окна, в цилиндр начинает поступать из ресивера блока чистый воздух, вытесняя через открытый выпускной клапан остатки отработавших газов.
Рабочий цикл на этом завершается.
Таким образом, в двухтактном двигателе, и это является его особенностью, рабочий ход поршня совершается при. каждом обороте коленчатого вала.
В числе процессов, характеризующих работу мощных и производительных машин и механизмов, следует отметить рабочий цикл четырехтактного двигателя. Это совокупность процессов, повторяющихся в определенной последовательности, во время которых цилиндр наполняется рабочей смесью, после чего происходит ее сжатие и воспламенение. Газы, образовавшиеся при сгорании, расширяются, а затем – удаляются из цилиндра.
- Рабочий цикл четырехтактного двигателя
- Двухтактный двигатель – особенности работы
- Рабочий цикл двухтактного двигателя – достоинства и недостатки
Рабочий цикл четырехтактного двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.
Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов.Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска. В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом.
Такт впуска
Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07—0,095 МПа
, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр.От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру
75—125 °С.
Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.
Такт сжатия
После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан закрывается, а выпускной закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8—1,5 МПа
, а температура газов
300— 450 °С.
Такт расширения, или рабочий ход
В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5—5 МПа
, а температура газов
2100—2400 °С.
При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа
, а температура — до
900—1200 °С.
Рекомендуем: Как правильно пристегнуть детское кресло в автомобиле: забота о безопасности
Такт выпуска
Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105—0,120 МПа
, а температура газов в начале такта выпуска составляет
750— 900 °С
, понижаясь к его концу до
500—600 °С.
Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.
Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06—0,12.
По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.
Двухтактный двигатель – особенности работы
Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.
Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.
Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки. Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.
Именно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.
Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе.Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.
Рабочий цикл двухтактного двигателя – достоинства и недостатки
Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%!
Не менее важное преимущество – компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве.Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена.
В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.
Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).
Рис. 1.2. Двигатель со снятой головкой блока цилиндров.
Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.
Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).
Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.
Рис. 1.3. Поршень с шатуном.
Рекомендуем: Что такое Вебасто: назначение, устройство, принцип работы
На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).
Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.
Примечание.
Распределительный вал двигателя приводится в действие коленчатым валом.
Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).
При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.
Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.
Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.
По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.
Как работает четырехтактный двигатель
Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:
- цилиндр;
- поршень — выполняет возвратно-поступательные движения внутри цилиндра;
- клапан впуска — управляет процессом подачи топливовоздушной смеси в камеру сгорания;
- клапан выпуска — управляет процессом выброса отработавших газов из цилиндра;
- свеча зажигания — осуществляет воспламенение образовавшейся топливовоздушной смеси;
- коленчатый вал;
- распределительный вал — управляет открытием и закрытием клапанов;
- ременной или цепной привод;
- кривошипно-шатунный механизм — переводит движение поршня во вращение коленчатого вала.
Рабочий цикл четырехтактного двигателя
Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:
- Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
- Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
- Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
- Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.
В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.
Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.
Принцип действия дизельных двигателей. Индикаторные и круговые диаграммы
Дизелем называют ДВС с внутренним смесеобразованием, в котором тяжелое жидкое топливо, вводимое в распыленном состоянии в цилиндр в конце хода сжатия, самостоятельно воспламеняется в горячем сжатом воздухе. Основными понятиями, относящимися ко всем дизельным двигателям, являются (рис. 17):
- верхняя мертвая точка (ВМТ) – положение поршня, при котором он наиболее удален от оси коленчатого вала;
- нижняя мертвая точка (НМТ) – положение поршня наиболее близкое к оси коленчатого вала;
- ход поршня S , [м] – расстояние между ВМТ и НМТ: S = 2R ;
- рабочий объем цилиндра VS , [м3] – объем, описываемый поршнем при движении между ВМТ и НМТ :
- объем камеры сжатия VC , [м3] – объем цилиндра над поршнем при нахождении его в ВМТ;
- полный объем цилиндра VA , [м3] – сумма рабочего объема цилиндра и объема камеры сжатия:
Принцип действия четырехтактного дизеля
Рабочий цикл в цилиндре четырехтактного дизеля осуществляется за два оборота коленчатого вала (4 хода поршня). Цилиндр четырехтактного дизеля закрыт крышкой, в которой располагаются клапаны для впуска свежего заряда воздуха и выпуска продуктов сгорания (рис. 18). Впускные и выпускные клапаны удерживаются в закрытом положении пружинами и давлением, создаваемым в цилиндре в периоды сжатия, сгорания топлива и расширения. Открытие клапанов в необходимые моменты времени осуществляется с помощью газораспределительного механизма.
Рабочий цикл четырехтактного дизеля состоит из следующих процессов (тактов): впуска, сжатия, расширения (рабочего хода) и выпуска, и происходит следующим образом (рис. 18):
Первый такт – впуск. В начальный момент времени давление в цилиндре двигателя несколько выше атмосферного – точка 1 индикаторной диаграммы (рис. 18). Поршень из ВМТ начинает свое движение к НМТ, открывается впускной клапан и поршень всасывает в цилиндр свежий заряд воздуха (процесс 1− 2). При этом давление в цилиндре устанавливается чуть ниже атмосферного (для двигателей без наддува) за счет гидравлического сопротивления впускного клапана. Часто для увеличения массы свежего заряда воздух предварительно сжимают в компрессоре до избыточного давления 0,13 ÷ 0,4 МПа, а затем охлаждают в воздухоохладителе. Такое увеличение массы свежего заряда называется наддувом.
Второй такт – сжатие. Поршень из НМТ начинает движение к ВМТ. Впускной клапан закрывается и происходит сжатие воздуха, поступившего в цилиндр дизеля. При этом уменьшается объем заряда воздуха, повышается его давление (процесс 2 − 3 ) до 3,6 ÷ 4,0 МПа в дизелях без наддува, а при высоком наддуве – до 11,0 МПа, что сопровождается увеличением температуры воздуха до 500 °C и выше. В конце такта, при нахождении поршня вблизи ВМТ, в цилиндр через форсунку начинает поступать мелко распыленное топливо, которое от соприкосновения с горячим воздухом самовоспламеняется и начинает гореть. При сгорании топлива давление в цилиндре повышается до 5,5 ÷ 8,5 МПа в дизелях без наддува, и до 11,0 ÷ 14,5 МПа в дизелях с высокой степенью наддува. Процесс сгорания ~ 40 % топлива в конце такта сжатия близок к изохорному (изображен на индикаторной диаграмме линией 3 − 4 ) и происходит при нахождении поршня вблизи ВМТ.
Третий такт – расширение (рабочий ход). В начале такта расширения топливо продолжает поступать в цилиндр дизельного двигателя, и процесс сгорания ~ 60 % топлива при начале движения поршня от ВМТ к НМТ близок к изобарному (процесс 4 − 5 на диаграмме). По окончании сгорания топлива происходит расширение продуктов сгорания (процесс 5 − 6 на индикаторной диаграмме). Расширяющиеся продукты сгорания воздействуют на поршень, совершая полезную работу. Давление газов в цилиндре двигателя и их температура в ходе процесса расширения понижаются.
Четвертый такт – выпуск. По окончании хода расширения открывается выпускной клапан, и поршень начинает движение от НМТ к ВМТ. При этом происходит выпуск отработавших газов через выпускной клапан (процесс 6 −1 на индикаторной диаграмме). Давление в цилиндре в процессе выпуска газов несколько выше атмосферного за счет гидравлического сопротивления выпускного клапана.
Таким образом в четырехтактном дизельном двигателе полезным является только такт расширения (рабочий ход), остальные три такта осуществляются за счет кинетической энергии вращающегося коленчатого вала с маховиком и работы других цилиндров двигателя.
Процессы газообмена в цилиндре дизельного двигателя (фазы газораспре-деления) могут быть изображены на двух окружностях, обозначающих периоды открытия впускных и выпускных клапанов в функции угла поворота коленчатого вала. Такие диаграммы называются диаграммами газораспределения или круговыми диаграммами.
В 4-хтактных дизелях на газообмен отведено 550 ÷ 570 градусов поворота коленчатого вала (ПКВ). Процесс газообмена в четырехтактных дизелях можно разбить на следующие периоды (рис. 19):
Свободный выпуск – осуществляется за счет разницы атмосферного давления и давления в цилиндре двигателя в момент открытия выпускного клапана (линия О − А диаграммы). При этом газы с большой скоростью устремляются в выпускной патрубок двигателя. Продолжительность периода свободного выпуска примерно соответствует углу предварения открытия выпускного клапана (ϕ1 = 40 ÷ 50° ПКВ). Тепловая и кинетическая энергия выпускных газов, как правило, используется для привода турбокомпрессора или работы утилизационных котлов.
Принудительный выпуск – теоретически начинается в НМТ и заканчивается в ВМТ. Это принудительное выталкивание продуктов сгорания из цилиндра телом поршня.
Продувка – в конце хода выпуска открывается впускной клапан (линия О − С , ϕ 3 = 50 ÷ 60° ПКВ до ВМТ), а выпускной остается открытым. При двух открытых одновременно клапанах происходит продувка камеры сгорания воздухом и удаление оставшихся в цилиндре газов. Кроме того, продувка снижает температуру стенок камеры сгорания, поршня и выпускных клапанов, улучшая условия работы и увеличивая срок их службы. Продолжительность продувки составляет ~ 110 ° ПКВ.
Наполнение – теоретически начинается в ВМТ, а фактически – с момента закрытия выпускного клапана (линия O − D , ϕ 4 = 50 ÷ 55° ПКВ за ВМТ) и частично протекает одновременно с продувкой. Окончание наполнения совпадает с приходом поршня в НМТ.
Дозарядка – поршень движется вверх по ходу сжатия, а впускной клапан некоторое время остается открытым до момента, соответствующего линии O − B на диаграмме (ϕ 2 = 30 ÷ 40° ПКВ после НМТ). Воздух продолжает поступать в цилиндр по инерции и несколько увеличивает плотность заряда в цилиндре.
Принцип действия двухтактного дизеля
Из рассмотрения индикаторной диаграммы четырехтактного дизельного двигателя видно, что он только половину времени, затраченного на цикл, работает как тепловой двигатель (такты сжатия и расширения). Остальное время (такты впуска и выпуска) двигатель работает как воздушный насос. Более полно время, отводимое на рабочий цикл, используется в двухтактных дизелях, в которых рабочий цикл осуществляется за один оборот коленчатого вала. Необходимая замена отработавших газов свежим воздухом происходит на небольшой части хода поршня в конце такта расширения и в начале такта сжатия, и составляет примерно 140 ÷ 150 ° ПКВ.
В отличие от четырехтактного, в двухтактном дизеле вместо впускных и выпускных клапанов в стенке цилиндра выполнены впускные (продувочные) ПО и выпускные ВО окна (рис. 20). Продувочным насосом ПН воздух нагнетается в воздушный ресивер Р, и через продувочные окна ПО поступает в цилиндр двигателя. Продукты сгорания топлива покидают цилиндр через выпускные окна ВО и выпускной патрубок ВП. Открытие и закрытие продувочных и выпускных окон осуществляется телом поршня при его движении в цилиндре.
Рабочий цикл двухтактного дизеля изображен на рис. 21 и состоит из следующих тактов:
Первый такт – сжатие. Поршень находится в НМТ. Продувочные и выпускные окна полностью открыты. При этом происходит продувка цилиндра, продолжающаяся до тех пор, пока поршень, двигаясь вверх, не перекроет продувочные окна (процесс 7 − 6 на диаграмме). При последующем движении поршень закроет выпускные окна, причем в период, изображенный на диаграмме линией 6 −1, из цилиндра выталкивается часть свежего заряда воздуха. После закрытия поршнем выпускных окон, начинается сжатие воздуха, сопровождающееся повышением давления и температуры (процесс сжатия изображен на диаграмме линией 1− 2 ). При подходе поршня к ВМТ в цилиндр впрыскивается мелко распыленное топливо, которое воспламеняется от соприкосновения с горячим воздухом. Часть топлива (~ 40 %) сгорает при постоянном объеме при нахождении поршня вблизи ВМТ (процесс 2 − 3).
Второй такт – рабочий ход (расширение). Поршень начинает движение от ВМТ к НМТ. Оставшаяся часть топлива (~ 60 %) сгорает при постоянном давлении (процесс 3 − 4 ). После полного сгорания топлива происходит расширение горячих газов (линия 4 − 5 ), которое заканчивается, когда поршень своей кромкой откроет выпускные окна в точке 5. С этого момента начинается свободный выпуск отработавших газов, сопровождающийся резким понижением давления в цилиндре (процесс 5 − 6 ). В точке 6 поршень открывает продувочные окна и начинается продувка цилиндра – принудительное вытеснение из него потоком воздуха отработавших газов и заполнение свежим зарядом воздуха (процессы 6 − 7 и 7 − 6 на диаграмме).
Теоретически при одинаковых размерах цилиндра и равных числах оборотов в минуту двухтактный дизель может развивать мощность в 2 раза большую, чем четырехтактный. В действительности мощность двухтактного дизеля (при прочих равных условиях) больше лишь в 1,7 ÷ 1,8 раза, чем у четырехтактного, так как часть хода поршня затрачивается на процессы выпуска и продувки. Кроме того на привод навешенного на двигатель продувочного насоса затрачивается 6 – 8 % мощности двигателя.
Весь процесс газообмена двухтактного дизеля можно условно разделить на следующие периоды (рис. 22):
Свободный выпуск – начинается с момента открытия поршнем выпускных окон (линия О − b ) и заканчивается в момент открытия поршнем продувочных окон (линия O − d ). В этот период происходит интенсивный выброс отработавших газов в выпускной тракт за счет перепада давлений в цилиндре (~ 0,45 МПа) и в выхлопном патрубке (~ 0,14 МПа).
Принудительный выпуск и продувка – начинаются в точке d и заканчиваются в момент закрытия продувочных окон (линия O − d ′ ). При этом происходит принудительное вытеснение отработавших газов продувочным воздухом и одновременное заполнение цилиндра свежим зарядом.
Потеря заряда воздуха – объясняется тем, что верхние кромки выпускных окон расположены выше продувочных. Поршень при движении к ВМТ до момента закрытия выпускных окон (линия O − a ) успевает вытолкнуть через выпускные окна часть поступившего в цилиндр воздуха. Фаза потери заряда воздуха является нежелательной, поэтому существует ряд конструктивных решений для замены ее на фазу дозарядки. Например, вместо щелевой схемы продувки, описанной выше, используют прямоточную клапанно-щелевую схему. В таких конструкциях дизелей выпускные окна отсутствуют, а вместо них в крышке цилиндра устанавливается выпускной клапан, приводимый в действие от механизма газораспределения.
Литература
Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]
Похожие статьи
- Смазочные масла: физико-химические свойства
- Топливо: элементарный состав топлива
- Понятие о тепловом балансе дизеля: экономическая оценка
- Цикл теплового двигателя: преобразование тепловой энергии
- Работа и мощность двигателей: среднее индикаторное давление
- Системы продувки двухтактных двигателей
- Рабочие циклы двухтактных двигателей
- Рабочие циклы четырёхтактных двигателей
- Основные данные двигателей: рабочий объем цилиндра
- Классификация и маркировка двигателей
5 Rating 5.00 (2 Votes)
РАБОЧИЙ ЦИКЛ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
Рабочий цикл — это строгая последовательность рабочих процессов (тактов), периодически повторяющихся в каждом цилиндре. Каждый такт соответствует одному проходу поршня.
Двигатели внутреннего сгорания бывают четырехтактными и двухтактными. Принципиальная разница между ними заключается в следующем: в четырехтактном двигателе один рабочий цикл происходит за четыре хода поршня, а в двухтактном — за два хода. Двухтактные двигатели используются в основном на мотоциклах, моторных лодках, скутерах и т. п. Поэтому здесь будем вести речь о четырехтактном двигателе внутреннего сгорания — именно такими моторами оснащаются легковые автомобили.
Рабочий цикл четырехтактного двигателя внутреннего сгорания включает в себя следующие такты.
1. Первый такт — впуск горючей смеси в цилиндр двигателя. Нужно сказать, что в цилиндре происходит сгорание топлива не в чистом виде, а смеси его паров с воздухом (горючая смесь). В советских автомобилях за приготовление такой смеси отвечал специальный прибор — карбюратор. Однако в современных автомобилях карбюраторы давно не применяются — данный процесс контролируется электроникой (прибором, который называется инжектор).
Примечание.
Для бензинового двигателя внутреннего сгорания оптимальной является горючая смесь, состоящая из 1 части бензина и 15 частей воздуха (то есть 1:15).
Рекомендуем: Меняем масло в АКПП на Лада Гранта и проверяем уровень масла в автомате
Горючая смесь попадает в цилиндр при открывшемся впускном клапане (напомню, что в нужный момент на него давит кулачок распределительного вала). В момент открытия впускного клапана поршень всегда расположен в ВМТ и начинает перемещаться вниз к НМТ. При этом над поршнем возникает разрежение, под воздействием которого в цилиндр поступает горючая смесь. Иными словами, при движении вниз к НМТ поршень засасывает горючую смесь в цилиндр через открывшийся впускной клапан. Как только поршень достигнет НМТ, клапан под воздействием мощной пружины возвращается на прежнее место и плотно закрывает впускное отверстие.
Когда горючая смесь попадает в цилиндр, она перемешивается с остатками имеющихся в нем выхлопных газов. Такая смесь называется рабочей, и именно она будет сгорать в камере сгорания.
На протяжении первого такта работы мотора кривошип коленчатого вала (рис. 1.4) проворачивается на пол-оборота.
Рис. 1.4. Коленчатый вал двигателя.
2. Исходное положение для начала второго такта таково: поршень находится в НМТ, впускной клапан плотно закрыт, цилиндр заполнен рабочей смесью. Во время второго такта поршень перемещается от НМТ к ВМТ, сжимая в процессе этого находящуюся в цилиндре рабочую смесь.
Опытным водителям хорошо знакомо такое понятие, как степень сжатия. Данный показатель информирует о том, во сколько раз сокращается объем рабочей смеси при достижении поршнем ВМТ. Отмечу, что степень сжатия — одна из наиболее значимых технических характеристик любого автомобиля.
В процессе сжатия рабочей смеси ее температура существенно повышается. При достижении поршнем ВМТ она равняется примерно +300… 400 °С. Что касается давления внутри цилиндра, то оно при этом составляет порядка 9-10 кг/см.
Второй такт заканчивается при достижении поршнем ВМТ. В этот момент рабочая смесь максимально сжата. За второй такт кривошип коленчатого вала проворачивается еще на пол-оборота. Следовательно, за два такта коленчатый вал делает один полный оборот.
3. Как отмечалось ранее, принцип работы двигателя внутреннего сгорания заключается в преобразовании тепловой энергии в механическую. Это происходит на третьем этапе работы двигателя, который называется рабочим ходом. Когда поршень находится в ВМТ, а рабочая смесь максимально сжата, между электродами свечи зажигания возникает электрическая искра, что вызывает воспламенение рабочей смеси (это происходит в камере сгорания). В результате на поршень, находящийся в ВМТ, оказывается мощное давление. Клапаны в этот момент плотно закрыты, продуктам горения деваться некуда, и именно они давят на поршень, который под воздействием этого давления вынужден двигаться вниз к НМТ. При этом он передает энергию своего движения через шатун на кривошип коленчатого вала, тем самым вынуждая его вращаться. Именно это вращение является движущей силой автомобиля.
Примечание.
Давление на поршень во время третьего такта рабочего цикла двигателя достигает 40 кг/см.
Во время третьего такта коленчатый вал двигателя проворачивается еще на пол-оборота.
4. Последний, четвертый такт рабочего цикла — выпуск отработанных газов. Он начинается, когда после третьего такта поршень находится в НМТ и начинает двигаться вверх. В этот момент под воздействием соответствующего кулачка распределительного вала открывается выпускной клапан и движущийся вверх поршень выдавливает выхлопные газы из цилиндра. Сразу после этого клапан плотно закрывает выпускное отверстие. Затем выхлопные газы через глушитель и выхлопную трубу выводятся наружу.
Четвертый такт завершается, когда поршень достиг ВМТ и плотно закрылся выпускной клапан.
В течение четвертого такта коленчатый вал проворачивается еще на пол-оборота. Следовательно, за четыре такта работы (на протяжении одного рабочего цикла) коленчатый вал делает два полных оборота.
После четвертого такта опять начинается первый такт и т. д.
В четырёхтактном дизеле рабочие процессы происходят следующим образом.
Поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива.
— Такт расширения, или рабочий ход При подходе поршня к ВМТ в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом высокого давления (ТНВД). Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. Под действием давления газов поршень перемещается от ВМТ к НМТ. Происходит рабочий ход.
— Такт выпуска Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
На этом видео показана работа реального двигателя. Камера встроена в цилиндр блока.
